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FREE CONVECTION AT SMALL RAYLEIGH NUMBER 

IN POROUS CAVITIES OF RECTANGULAR, ELLIPTICAL, 
TRIANGULAR AND OTHER CROSS-SECTIONS 

J. R. PHILIP 

CSIRO Division of Environmental Mechanics, Canberra, A.C.T. 2601, Australia 

(Receioed 18 September 1981 and in revisedform 22 February 1982) 

Abstract-Exact solutions are developed for small Rayleigh number free convection in 2-dim. porous cavities 
of various shapes due to a uniform temperature gradient normal to the gravitational field. The theorem is 
established that such flows are independent of cavity orientation. The appropriate (rotation-invariant) 
characteristic length is thus A 1’2 (A cross-sectional area). Exact solutions are presented in detail for , 
rectangular and elliptical cavities with I (ratio of long to short axis) arbitrary, and for equilateral triangular 
cavities. The critical Rayleigh number for applicability of the analysis is about 1 for cavities with long axis 
horizontal, and about AZ with long axis vertical. Simple exact solutions exist also for cavities of other shapes. 

NOMENCLATURE 

cross-sectional area of porous cavity; 
for rectangular cavity, length of longer side; 
for elliptical cavity, length of major axis; 
for rectangular cavity, length of shorter 
side ; for elliptical cavity, length of minor 
axis ; 
gravitational acceleration; 
total convective heat transport within the 
cavity across the horizontal containing the 
cavity centre; 
total conductive heat transport within the 
cavity across the vertical containing the 
cavity centre; 
permeability of the porous medium; 
characteristic macroscopic length of the 
system; 
for equilateral triangle, length of side; 
Rayleigh number ; 

R,, R,, maximum Rayleigh number for applica- 
bility of present analysis with x.+ direction 
respectively horizontal and vertical; 

T, dimensionless temperature; 

AT,, characteristic macroscopic horizontal tem- 
perature difference of the system; 

U, W, dimensionless flow velocity in the X,, Z, 
directions ; 

x, z, dimensionless rectangular Cartesian coor- 
dinates in the cross-sectional plane of the 
cavity, with Z vertical, positive upwards; 

x, z, dimensionless rectangular Cartesian coor- 
dinates in the cross-sectional plane of the 
cavity, with coordinate directions fixed by 
cavity geometry, not the gravitational field. 

Greek symbols 
a, coefficient of thermal volume expansion ; 
P? ratio of convective to conductive heat 

transfer ; 

0, minus constant horizontal temperature 
gradient ; 

K, thermal diffusivity of the porous medium ; 
1, aspect ratio, a/b; 

“, kinematic viscosity of the fluid in the po- 
rous medium; 

a’, dimensionless stream function ; 
@ ma* maximum value of @. 

Subscripts 

1, value with x* direction horizontal; 

2, value with x* direction vertical; 
* dimensional rather than dimensionless 

variable. 

I. INTRODUCTION 

THERE is an extensive literature on free convection in 
porous media, i.e. on fluid flows in porous media in a 
gravitational field which are driven by gradients of 
fluid density caused by gradients of temperature or 
solute concentration. Numerous applications occur in 
industrial and geophysical contexts. In the present 
work we refer specifically to temperature-induced 
flows, but the modifications to solute-induced flows 
will be obvious and straightforward. 

Many studies, including most of the earlier work, 
have dealt with systems heated from below [l-S]. 
Recently much attention has been given to investi- 
gation of free convection in porous media induced by a 
temperature gradient normal to the gravitational field 
[9-151. Almost all these studies relate to the 2-dim. 
problem of steady free convection at large Rayleigh 
number in a rectangular cavity with two opposite 
vertical boundaries held at fixed but different tempera- 
tures. This has become the paradigmatic problem, and 
I am unaware of comparable 2-dim. studies for other 
cavity shapes. 
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There appear to have been no analogous studies of 
free convection in porous cavities at small Rayleigh 
number, even for the rectangular cavity. The present 
work develops exact solutions for small Rayleigh 
number free convection due to a temperature gradient 
normal to the gravitational field in 2-dim. porous 
cavities of various shapes. Despite their simplicity, 
these convection solutions do not seem to have been 
recognized previously. 

Although virtually all work has been done on large 
Rayleigh number flows, small Rayleigh number con- 

vection is also of practical interest and concern. 
Section 7.2 discusses the application to soils. The 
mathematics of small Rayleigh number flows might be 

considered so elementary as to be without interest. Yet 
it is remarkable that relatively complicated flows can 
be analyzed so simply ; and it must be added that small 
Rayleigh number solutions represent natural points of 
departure for solutions obtained by regular expansion 
in the Rayleigh number. For example, the exact 
solution presented in equation (3.3) below is relevant 
to a recent essay at regular expansion of the rec- 
tangular cavity problem [14]. 

2. FLOW EQUATION FOR FREE CONVECTION AT 

SMALL RAYLEIGH NUMBER 

The equations governing 2-dim. steady convection 
within a porous medium induced by a temperature 
differential may be written [4] 

(2.1) 

(2.2) 

where the stream function Q.+ is such that 

u*+ w,=$. (2.3) 
* * 

We introduce the Rayleigh number 

KV 

Then equations (2.1)) (2.3) may be reduced to the 
dimensionless forms 

Note that 

XZlT 1 -=__=_. ~~ 
X, Z, L ’ T, = z’ 

@lUUL -. =_. ~=_~=~ 

Q* K’ u* w, K 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

When R is so small that heat transfer by conduction 
dominates that due to convection, the RHS ofequation 
(2.6) may be set equal to zero. Then if the horizontal 
temperature gradient in the system, aT/i?X,, is every- 
where constant and equal to -0, we may rewrite 

equation (2.5) as 

V2@ + R = 0 (2.9) 

where we have replaced AT,L on the RHS of equation 

(2.4) by BL2. 
Note that equation (2.9) is invariant under rotation 

in the (X, I’) plane. Accordingly, we have the following 

theorem : 

Theorem. Steady 2-dim. free convection at low 

Rayleigh number due to a uniform horizontal tem- 
perature gradient within a porous cavity of arbitrary 
configuration is independent of the orientation of the 
cavity cross-section with respect to the gravitational 

field. 

It follows that Lz depends only on the shape and size 
of the cross-section and is independent of its orien- 
tation. Consequently we take L2 = A, the cross- 
sectional area. We therefore restate equation (2.4) in 
the form 

ukgHA 
R=-. 

KV 
(2.10) 

3. SOLUTION FOR RECTANGULAR CAVITIES 

The rectangular cavity has sides of length a and b 

(a > b), and we choose coordinates (x,, z*) such that 

x* = + $I contain the short sides of the rectangle and 

Z* = + ib contain the long sides. Note that, because of 
the rotational invariance of the problem, we work here, 
and in succeeding sections, with space coordinates (x,, 
z,), fixed by the cavity geometry, rather than with 
coordinates (X,, Z,), fixed by the direction of the 
gravitational field. We shall use also the dimensionless 

coordinates (x, z) defined by 

x ; 1 
-_=__=_ 
X* z* L’ 

(3.1) 

We then have equation (2.9) subject to the 
conditions 

@ = 0, 1.x d :A’ 2, z = f$;.-“‘; 
(3.2) 

@ = 0, x = +‘i”2 
-2 / , IZI < p-12. 

Here i, = a/b is the aspect ratio. 
The solution of equation (2.9) subject to the con- 

ditions (3.2) is [16] 

@ = $ 
.[ 

1 
1 - 4/iz2 - ; 1 

n=O 

x (- 1)” cosh[(2n + l)ni?x] cos[(2n + l)r~1”~z] 

(2n + l)j cosh[(n + &IL] 1 (3.3) 

Figure 1 depicts the stream function in the dimen- 
sionless form R-%(x, z) for 1 = 1, 2 and 4. 



Small Rayleigh number convection in various porous cavities 1505 

0.6 0.6 

-06 -0.4 -02 0- -0-a -06 -0-4 -02 0 x 
x 

-1.0 -0-8 -06 -0.4 -0.2 0 

x 

FIG. 1. Free convection at small Rayleigh number in rectangular cavities. Dimensionless plot of the stream 
function for aspect ratio E. = 1, 2, and 4. Numerals on the curves are values of 10%/R. 

It follows from equation (3.3) that the maximum 
value of 0, omax = @(O, 0), is given by 

1-s f (-1) 
sech[(n + $A] 

n=o 1 (2n+1)3 . 

(3.4) 

The series converges rapidly, so that replacing it by its 
leading term gives an excellent approximation. In fact, 
for 1 > 4.9 the simple relation 

(3.5) 

is accurate to 1 in 1000. Figure 2 shows the dependence 
of R-' a,,,,, on i. 

It is of interest to compare the exact solution for 
@ maD equation (3.4), with values secured for 1 = 1,2,3 
by a Galerkin method employing a truncated (M x N) 
spectral representation [14]. The exact values [requir- 
ing 2-5 terms of the summation on the right of 

FIG. 2. Free convection at small Rayleigh number in rec- 
tangular, elliptical, and equilateral triangular cavities. De- 
pendence of the maximum value of the dimensionless stream 
function on aspect ratio, plotted in the form Q,,,,JR against A. 

equation (3.4)] confirm the results obtained from the 
elaborate numerical study. 

We now examine the relative magnitudes of con- 
vective and conductive heat transfer in the system. We 
take as the measure of convective transfer the quantity 
H, the total convective heat transport within the cavity 
across the horizontal containing the cavity centre 

(0, 0). 
We denote by H, the value of H when the x* 

direction is horizontal. It follows from equation (3.3) 
that 

K@A"'R 
H, =- c&l ,2 1-g 

x f (-1) 
tanh[(n + $A] 1 (2n+1)4 

(3.6) 
n=O 

Similarly, we denote by H, the value of H when the x* 
direction is vertical. It follows from equation (3.3) that 

K@A~“R 
H, =- 

121,3,2 

(3.7) 

We take as the measure of conductive heat transfer 
the quantity K, the total conductive heat transfer per 
unit axial length within the cavity across the vertical 
containing the cavity centre (0,O). Denoting by K, the 
value of K with the x* direction horizontal, we have 

(3.8) 

Similarly, the value of K with the x* direction vertical, 

K 
2 

= K(j/f’:a 1’“. (3.9) 

We introduce the ratio fl = H/K as the measure of 
the relative importance of convective and conductive 
heat transfer in the system ; and, in particular, we write 
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Table 1. Comparison of numerical results [14] and present exact solution 

Values of loO@,,, 

L 

Galerkin method using truncated Exact value 
spectral representation [14] from equation 

M N Value (3.4) 

1 20 20 1.36556 1.367135 

2 30 20 5.6921 5.693592 

3 36 26 4.0905 4.089413 

p, = H,/K, and f12 = HJK,. We thus find 

& = & 

[ 

1 - 7 i sech[(n++)nA] . (3.11) 
7r “=0 (2n+l)4 1 

The criterion for applicability of the present analysis 
is that convective heat transfer should be small com- 
pared with conductive transfer, e.g. that fl < 0.1. We 
thus obtain the following criteria on the Rayleigh 
number R: 
For rectangular cavities with long axis horizontal 

R<R 
I 

x “$ (-1) 
tanh[(n + $A.] -i 

(2n + 114 
1 

(3.12) 

For rectangular cavities with long axis vertical 

(3.13) 

The series in equations (3.12) and (3.13) converge 
rapidly, so that replacing them by their leading terms 
gives good approximations. 

When Iz is large enough, the simple expressions 

/I 
R, =f- 

5 A - 0.65 
(3.14) 

and 

R, = 61=/5 

are useful. Note that 

(3.15) 

$ i (- 1)“(2n + 1)-4 z 0.65. 
“=O 

For the square cavity with A = 1, 0,=X = 0.0737 R, PI 
= /I2 = R/19.8, and R, = R, = 1.98. 

The dependence of R, and R, on A for rectangular 
cavities is shown in Fig. 3. 

4. SOLUTION FOR ELLIPTICAL CAVITIES 

The elliptical cavity has axes of length a and b 

(a > b) and we choose coordinates (x,, z.J such that 

x* = 0 and z* = 0 contain the minor and major axes 
respectively. In this case L = $(mb)“‘. We then have 
equation (2.9) subject to the condition that 

Q = 0 on the ellipse rr1-‘x2 + niz2 = 1. (4.1) 

The solution of equation (2.9) satisfying condition (4.1) 
is 

o,? 2A &l - TL-’ x2 - xE,z=). (4.2) 

Figure 4 depicts the stream function in the dimension- 
less form R-‘@(x, z) for I = 1, 2 and 4. 

It follows from equation (4.2) that 

R 2. 
@ max = -.-. 

2n I= + 1 

The dependence of R ‘@,,,ax on i for elliptical cavities 
is shown on Fig. 2. 

In this case 

H, = IcOA’:~ (4.4) 

H = icB1@ A’” (g)(G), 2 (4.5) 

100 

50 

n 
3 20 

2 

I 10 
z 
;o 

b 5 

2 

1 

10 5 2 1 2 5 10 

A for long axls x for long axls 

hmzontal vertical 

FIG. 3. Free convection at small Rayleigh number in 
rectangular, elliptical, and equilateral triangular cavities. 
Dependence on the aspect ratio I of the critical value of R 

for applicability of the small Rayleigh number analysis. 
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FIG. 4. Free convection at small Rayleigh number in elliptical cavities. Dimensionless plot of the stream 
function for aspect ratio 1 = 1, 2, and 4. Numerals on the curves are values of 10%/R. 

(4.6) 
The required solution is 

2 
K z = -,&A’*2 1’12 

rr’ 12 

We therefore have that 

and 

@= 
R 

-(z + 33”‘+)(z - 31’2x - 2.3-3*) 

(4.7) 
x (z + 3”‘~ - 2.3-3’4). (5.2) 

Figure 5 depicts the stream function in the dimension- 
less form R-%(x, z). We note that 

(4.8) 
@ max = 3-‘j2 R = 0.0642 R. (5.3) 

This value is plotted on Fig. 2 for comparison with the 
result for rectangular and elliptical cavities. 

(4.9) In this case 

and the criteria on R for applicability of the present 
analysis follow. For elliptical cavities with long axis 
horizontal 

8R 
H, = r&A”2 .p (5.4) 

81.33’4 ’ 

R < R, = ;(I + X2). 

For elliptical cavities with long axis vertical 

R < R, = ;(A2 + 1). (4.11) 

For the circular cavity with 1 = 1, @,,, = O.O796R, 
/?, = b2 = R/18.8, and R, = R, = 1.88. The depen- 
dence of R 1 and R, on 1 for elliptical cavities is shown 
in Fig. 3. 

5. SOLUTION FOR TRIANGULAR CAVITIES 

We consider the cavity with cross-section consisting 
of an equilateral triangle of side 1. We choose coor- 
dinates (x,, z*) such that the centroid of the triangle is 
(0,O) and one vertex is (0,3 - ’ j21). The x.+ axis is thus the 
perpendicular bisector of one side of the triangle. We 
have A = a31’212, so that L = $31’41. Equation (2.9) is 
then subject to the condition that 

D=O on the triangle (z+~-~*)(z- 31’2x-2.3-3@) 

= 0. (5.1) 

-0.8 -06 -0.4 -02 0 

x 

FIG. 5. Free convection at small Rayleigh number in equilat- 
eral triangular cavities. Dimensionless plot of the stream 

function. Numerals on the curves are values of 10%/R. 
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Table 2. Values of a, Y, K for air- and water-filled soil at 293 K 

Y K 
Fluid (K?,) (m’s_‘) (m* s-‘) 

Air 3.4 X 10-X 1.53 x 1o-5 2 X lo-’ 

Water 2.05 x 1O-4 1.01 x 1o-b 8 x lo-’ 

H, = K~A’ 2 -&, (5.5) 

K, = 3+fj41,2, (5.6) 

K, = 4.3-5’4~%,41:2. (5.7) 

Accordingly, 

(5.9) 

We thus have the following criteria for applicability of 
the present analysis : 
For equilateral triangular cavities with one side 
horizontal 

R < R, = 3.04. (5.10) 

For equilateral triangular cavities with one side 
vertical 

R < R, = 1.65. 

These criteria are shown on Fig. 3. 

(5.11) 

6. CAVITIES OF OTHER SHAPES 

It will be evident from Sections 3-5 that exact 
solutions are readily available for cavities with various 
singly and doubly connected cross-sections bounded 
by streamlines in the preceding solutions. These cavity 
configurations are, in general, somewhat artificial, and 
we shall not elaborate on them here. For the cavity of 
annular cross-section we note in passing the simple 
result 

(6.1) 

with the total convective flow independent of the ratio 
of the internal and external radii. 

Simple exact solutions of equation (2.9) exist also for 
porous bodies of various infinite cross-sections. In 
general, these solutions are of restricted interest: 
physical realization of the boundary conditions at 
infinity is usually problematical; and the Rayleigh 
number tends to become arbitrarily large in the far 
flow field. 

7. CONCLUDING REMARKS 

7.1. Comparison of results for cavities of various shapes 
Figures 1,4, and 5 indicate that the general charac- 

ter of the convective flows for cavities of the various 
shapes and with various aspect ratios are essentially 

similar. We emphasize that A’.2 proves a very efficient 
characteristic length, leading to dimensionless results 
for integral properties of the convective motion which 
vary relatively little with cavity shape. The variation of 
Q,,, with i for rectangular and elliptical cavities is 
essentially similar. The ellipse constitutes a more 
efficient fow field than the rectangle, and the rectangle 
is more efficient than the triangle ; and these differences 
are reflected in the result (Fig. 2) that Qmaxis greater for 
the ellipse than for the rectangle, and it is greater for 
both than for the triangle (A = 1). As shown in Fig. 3, 
the variation of critical Rayleigh number with i. is quite 
similar for the rectangle and the ellipse. 

7.2. Applications to soil 
Table 2 gives values of CL, v, and K for dry (air-filled) 

and saturated (water-filled) soil at 293 K. The values 
given for K are typical values based on the extensive 
studies of de Vries [17, 181. Using these values and 
taking g = 9.8 m sY2, wefindR = 11 x 109k8Afor 
dry soils and R = 2.5 x lo9 kOA for saturated soils. 
Units of k, 0 and A are, respectively, m2, Km- ‘, and 
m2. The permeability k varies in the range 10-r’ m* or 
more for sands to lo-” m2 or less for fine-textured 
soils [19]. Evidently there is a wide combination of 
practical values of k, 8, and A which yield values of R 
satisfying the criteria for applicability of the present 
analysis. 

The practical interest in these convective motions at 
small Rayleigh number centres on the flows them- 
selves, and on the consequent passive convection of 
certain entities with small molecular diffusivity. In the 
case of water-filled soils, the transport in this way of 
nutrients, 02, and CO2 dissolved in the soil-water are 
of concern to plant scientists. The molecular diffusivity 
of these entities in water is of order 10e9 m2 s-l. 
Transport to plant roots plays an important role in 
plant nutrition, and the transport of 0, and CO, to 
and from all subterranean plant parts is essential to 
maintenance of the respiration of such parts. 

7.3. Extensions of this study 
In conclusion, we note three directions in which 

extensions of this study may be made. Firstly, the 
approach may be carried over from 2-dim. flows to 3- 
dim. flows with cylindrical symmetry about a vertical 
axis. Secondly, the possibility offers of supplementing 
the present results by regular expansions in R with the 
‘coefficient’ of each term an exact solution. Thirdly, our 
rotational invariance theorem has its analogue for free 
convection of Newtonian fluids. It is planned to treat 
these matters in later communications. 
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LA CONVECTION LIBRE AUX PETITS NQMBRES DE RAYLEIGH DANS LES CAVITES PO- 
REUSES A SECTION TRANSVERSALE RECTANGULAIRE, ELLIPTIQUE, TRIANGULAIRE, 

ET D’AUTRE FORME 

R&urn&On d&eloppe des solutions pr&ises pour la convection libre aux petits nombres de Rayleigh dans 
les cavitb poreuses P deux dimensions de forme diffkrente provoqu& par un gradient de temptrature 
constant ~r~ndiculaire au champ de gravitation. On dtablit le th6oreme clue de tels &oulements sont 
ind&pendants de l’orientation de la caviti. La longueur caractkristique (6 rotation invariable) est done A’,* 
(A-surface de la section transversale). On prlsente en d&ail des solutions prkises pour les cavitks 
rectangulaires et elliptiques $ d (rapport de l’axe long ii l’axe court) arbitraire, ainsi que pour les cavitls ayant 

la forme d’un triangle dquilatlral. Le nombre de Rayleigh qui est critique ri l’kgard de l’application de 
l’analyse est de 1 environ pour les cavitCs &axe long horizontal et de I2 environ pour celles ;i axe long vertical. 

I1 existe egalement de simples solutions pr&cises pour cavitb d’autres formes. 

DIE FREI KONVEKTION BE1 KLEINER RAYLEIGH-ZAHL IN POROSEN HOHLRAUMEN 
RECHTECKIGEN, ELLIPTISCHEN, DREIECKIGEN, SOWIE ANDEREN QUERSCHNITTES 

~~rn~nfas~~-~~r die durch ein einheitliches, zum Gravitationsfeld senkrechtes Tem~raturgef~lle in 
zweidimensionalen poriisen Hohlrlumen verschiedener Form bedingte freie Konvektion bei kleiner 
Rayleigh-Zahl werden Genaue LBsungen hergleleitet. Das Theorem, dass solche Strtimungen unabhlngig 
von der Hohlraumsorientierung sind, wird bewiesen. Die entsprechende (drehungsinvariante) Kennlgnge ist 
demzufolge A”’ (A: Querschnittsfllche). Genaue Ltisungen wer&n fiir rechteckige bzw. elliptische 
Hohlrlume bei beliebigem I (Verhtiltnis der iangen zur kurzen Achse) sowie fiir Hohlrlume, die die Form 
eines gieich~itigen Dreicks aufweisen, ausf~hrlich beschrieben. Die fiir die Anwendbarkeit der Analyse 
kritische Rayieigh-Zahl betrggt bei Hohlrlumen tit horizontaler Ianger Achse ungefghr 1 und bei solchen 

mit vertikaler langer Achse etwa E.‘. Es bestehen such genau Liisungen fur HohlrLume anderer Formen. 

CBO~O~HA~ KOHBEK~~~ l-IPH HE6O~b~~X ‘iMCJIAX PEnEIf BHYTPkf 
nOPMCTbiX HOJIOCTEG C HP~MOYrO~bHbIM~, ~~~~HT~qECK~M~, 

TPEYI-OJ-IbHbIMH, M APYrMMki IIOIIEPEqHbIMM CErIEHklRMM 

AHHOT~UHII - TosHbIe pemeHHx pa3pa6aThlBamTCR anfl ceo6onaol KoHBeKUllB nps He6OnbUmx 4Hcnax 

PeJIeIl BHyTpIi nOpIiCTbIX nOJIOCT& pa3JIWIHbIX I#iOpM 06ycnoseHa PaBHOMepHbIM TeMIIepaTypHbIM 

rpa2menToM nepne~nKynKpnbIM K rpaBnTaU~OHHOMy nonIo. Teopehiofi ycTanoBneHo, ‘170 TaKHe 

IIOTOKB Iie’JaBHCRMbI OT OpHeHTaUKH IIO,IOCTU. COOTBeTCTByIOIUaII Xa@iKTepHaB (BpalQaTtXbHO HHBa- 

psamsax) n.nnHa - A “’ (A - nnOLuanb nonepeWIOr0 Ce’leHIia). TOqHbIe pemeHNII IIpexcTasnRIoTca 

noapo6Ho LInR npnMoyrOJbHbIX II WIJIHIITwIecKHX rIOnoCTek nps r1p0~i380nb1i0~ ,? (CooTHomeHue 

LIJIIIHHOZi OCB K KOpOTKOii) II JIJIN paBIIOCTOpOHHbIX TpyrO,IbHbIX nOJIOCTeii. KpHTIi’IeCKOe WiCJlO 

Penen Ana npliMeHeHus aHanu3a nnff nonocTei% c ropu30wanbHofi anit~~017 0cbIo - oKon 1 a 

C BepTEiKaJIbHOii ,!IJIIiHIIOii OCbM - OKOJIO ,i2. npOCTbie T09HI.E ~IIIeIiEiII CyIUeCTByIoT TaKXCe mII 

rIOJIOCTeri C XpyI-IIMIi +OpM. 


