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Abstract—Exact solutions are developed for small Rayleigh number free convection in 2-dim. porous cavities
of various shapes due to a uniform temperature gradient normal to the gravitational field. The theorem is
established that such flows are independent of cavity orientation. The appropriate (rotation-invariant)
characteristic length is thus 4'”? (A, cross-sectional area). Exact solutions are presented in detail for
rectangular and elliptical cavities with 4 (ratio of long to short axis) arbitrary, and for equilateral triangular
cavities. The critical Rayleigh number for applicability of the analysis is about 1 for cavities with long axis
horizontal, and about A2 with long axis vertical. Simple exact solutions exist also for cavities of other shapes.

NOMENCLATURE

A, cross-sectional area of porous cavity;

a, for rectangular cavity, length of longer side ;
for elliptical cavity, length of major axis;

b, for rectangular cavity, length of shorter
side; for elliptical cavity, length of minor
axis;

g, gravitational acceleration ;

H, total convective heat transport within the

cavity across the horizontal containing the
cavity centre;

K, total conductive heat transport within the
cavity across the vertical containing the
cavity centre;

k, permeability of the porous medium;

L, characteristic macroscopic length of the
system;

I, for equilateral triangle, length of side;

R, Rayleigh number;

Ry, R,, maximum Rayleigh number for applica-
bility of present analysis with x_ direction
respectively horizontal and vertical ;

T, dimensionless temperature ;

AT,, characteristic macroscopic horizontal tem-
perature difference of the system;

U, W, dimensionless flow velocity in the X, Z,
directions;

X, Z, dimensionless rectangular Cartesian coor-
dinates in the cross-sectional plane of the
cavity, with Z vertical, positive upwards;

X, z, dimensionless rectangular Cartesian coor-

dinates in the cross-sectional plane of the
cavity, with coordinate directions fixed by
cavity geometry, not the gravitational field.

Greek symbols

a, coefficient of thermal volume expansion;
B, ratio of convective to conductive heat
transfer;

0, minus constant horizontal temperature
gradient;;

K, thermal diffusivity of the porous medium;

A, aspect ratio, a/b;

v, kinematic viscosity of the fluid in the po-
rous medium ;

o, dimensionless stream function ;

® .., maximum value of ®.

Subscripts

1, value with x, direction horizontal;

2, value with x, direction vertical;

* dimensional rather than dimensionless
variable.

1. INTRODUCTION

THERE is an extensive literature on free convection in
porous media, i.e. on fluid flows in porous media in a
gravitational field which are driven by gradients of
fluid density caused by gradients of temperature or
solute concentration. Numerous applications occur in
industrial and geophysical contexts. In the present
work we refer specifically to temperature-induced
flows, but the modifications to solute-induced flows
will be obvious and straightforward.

Many studies, including most of the earlier work,
have dealt with systems heated from below [1-8].
Recently much attention has been given to investi-
gation of free convection in porous media induced by a
temperature gradient normal to the gravitational field
[9-15]. Almost all these studies relate to the 2-dim.
problem of steady free convection at large Rayleigh
number in a rectangular cavity with two opposite
vertical boundaries held at fixed but different tempera-
tures. This has become the paradigmatic problem, and
I am unaware of comparable 2-dim. studies for other
cavity shapes.
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There appear to have been no analogous studies of
free convection in porous cavities at small Rayleigh
number, even for the rectangular cavity. The present
work develops exact solutions for small Rayleigh
number free convection due to a temperature gradient
normal to the gravitational field in 2-dim. porous
cavities of various shapes. Despite their simplicity,
these convection solutions do not seem to have been
recognized previously.

Although virtually all work has been done on large
Rayleigh number flows, small Rayleigh number con-
vection is also of practical interest and concern.
Section 7.2 discusses the application to soils. The
mathematics of small Rayleigh number flows might be
considered so elementary as to be without interest. Yet
it is remarkable that relatively complicated flows can
be analyzed so simply ; and it must be added that small
Rayleigh number solutions represent natural points of
departure for solutions obtained by regular expansion
in the Rayleigh number. For example, the exact
solution presented in equation (3.3) below is relevant
to a recent essay at regular expansion of the rec-
tangular cavity problem [14].

2. FLOW EQUATION FOR FREE CONVECTION AT
SMALL RAYLEIGH NUMBER
The equations governing 2-dim. steady convection
within a porous medium induced by a temperature
differential may be written [4]
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where the stream function ®__ is such that
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We introduce the Rayleigh number
R - okgAT *L.
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Then equations (2.1)—(2.3) may be reduced to the
dimensionless forms

V20 — R T 2.5)
T’ '
oD, T)
= VT, 2.6
X, Z) 29
el faly
- 2, w=__. 2.7
U=-% ox &7
Note that
X z 1. T 1
X*—Z*_L, T*—AT*’
1 U w L
¢_1LU_W_L s
(D* K U* W* K

J. R. PHiLIP

When R is so small that heat transfer by conduction
dominates that due to convection, the RHS of equation
(2.6) may be set equal to zero. Then if the horizontal
temperature gradient in the system, 0T/0X, is every-
where constant and equal to —6, we may rewrite
equation (2.5) as

V20 + R=0 (2.9)

where we have replaced AT, L on the RHS of equation
(2.4) by L%

Note that equation (2.9) is invariant under rotation
in the (X, Y) plane. Accordingly, we have the following
theorem:

Theorem. Steady 2-dim. free convection at low
Rayleigh number due to a uniform horizontal tem-
perature gradient within a porous cavity of arbitrary
configuration is independent of the orientation of the
cavity cross-section with respect to the gravitational
field.

It follows that L? depends only on the shape and size
of the cross-section and is independent of its orien-
tation. Consequently we take L2 = A, the cross-
sectional area. We therefore restate equation (2.4) in
the form

R = akgbA .

KV

(2.10)

3. SOLUTION FOR RECTANGULAR CAVITIES

The rectangular cavity has sides of length ¢ and b
(a = b), and we choose coordinates (x,, z,) such that
x, = = %acontain the short sides of the rectangle and
z, = & 1b contain the long sides. Note that, because of
the rotational invariance of the problem, we work here,
and in succeeding sections, with space coordinates (x,,
z,), fixed by the cavity geometry, rather than with
coordinates (X, Z,), fixed by the direction of the
gravitational field. We shall use also the dimensionless
coordinates (x, z) defined by
x = _ 1 3.1)

We then have equation (2.9) subject to the
conditions

®=0, |x|<?

=0 x=

” o= 1~-1:2.
z + 24 Y (32)

L2 2] < 112,

Here A = a/b is the aspect ratio.
The solution of equation (2.9) subject to the con-
ditions (3.2) is [16]

32
-3

s

R
O =21 — 4iz?—
8/1[1 4z

x
)}
n=0

) (—1)" cosh[(2n+ 1)mA' 2x] cos[(2n + 1)mA! "22]].(3.3)

(2n+1)? cosh[(n+$)mi]

Figure 1 depicts the stream function in the dimen-
sionless form R™'®(x, z) for A = 1, 2 and 4.
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Fic. 1. Free convection at small Rayleigh number in rectangular cavities. Dimensionless plot of the stream

function for aspect ratio 4 =

It follows from equation (3.3) that the maximum

value of @, @, = ®(0, 0), is given by
2z h{(n+ Yl
(Dmax=£ 1 __23 5 (_l)nsec [(n+217m] '
84 > /o (2n+1)
(3.4)

The series converges rapidly, so that replacing it by its
leading term gives an excellent approximation. In fact,
for A = 4.9 the simple relation

R

) -
84

max = (3'5)
is accurate to 1 in 1000. Figure 2 shows the dependence
of R"' ®_, on i

It is of interest to compare the exact solution for
... equation (3.4), with values secured for 4 = 1,2, 3
by a Galerkin method employing a truncated (M x N)
spectral representation [ 14]. The exact values [ requir-

ing 2-5 terms of the summation on the right of
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FiG. 2. Free convection at small Rayleigh number in rec-
tangular, elliptical, and equilateral triangular cavities. De-
pendence of the maximum value of the dimensionless stream
function on aspect ratio, plotted in the form ®@,,,./R against 4.

1, 2, and 4. Numerals on the curves are values of 10*®/R.

equation (3.4)] confirm the results obtained from the
elaborate numerical study.

We now examine the relative magnitudes of con-
vective and conductive heat transfer in the system. We
take as the measure of convective transfer the quantity
H, the total convective heat transport within the cavity
across the horizontal containing the cavity centre
(0, 0).

We denote by H,; the value of H when the x,
direction is horizontal. It follows from equation (3.3)
that

KkOA' IR [ 64

Logal? )

& wtanh[(n + Hri]
x EO( R J (3.6)

Similarly, we denote by H, the value of H when the x,,
direction is vertical. It follows from equation (3.3) that

o KOAL2R 96 * sech[(n + Pni]
SRRy P> @en+1p |

T n=0
3.7)

We take as the measure of conductive heat transfer
the quantity K, the total conductive heat transfer per
unit axial length within the cavity across the vertical
containing the cavity centre (0, 0). Denoting by K, the
value of K with the x, direction horizontal, we have

K, = kA2 j 12, (3.8)

Similarly, the value of K with the x, direction vertical,
K, = khA'? 1172 3.9)
We introduce the ratio § = H/K as the measure of

the relative importance of convective and conductive
heat transfer in the system ; and, in particular, we write
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Table 1. Comparison of numerical results [14] and present exact solution

Values of 100 @

max

Galerkin method using truncated Exact value
spectral representation [14] from equation
/ M N Value 3.4)
1 20 7.36556 7367135
2 30 5.6921 5.693592
3 36 4.0905 4.089413

B, = H,/K, and 8, = H,/K,. We thus find
> 1
8, = 5|:1 64 5 (—1y tanh[(n+2)ni]:|,

O = @n+ 1)
(3.10)
_ R 9% ¢ sech[(n+§)7t,{]:|
,82—127[1 n4"\;0———(2n+1)4 .(3.11)

The criterion for applicability of the present analysis
is that convective heat transfer should be small com-
pared with conductive transfer, e.g. that § < 0.1. We
thus obtain the following criteria on the Rayleigh
number R:

For rectangular cavities with long axis horizontal

4 64
R<R, = -[1 - —
5 A

- Jtanh[(n + HnA] |?

X ZO (—1) T I ] . (3.12)

For rectangular cavities with long axis vertical

642 96 = sech[(n+3)mi] ™"
R, = |1 = 2 p Xy anAl
R<Ri=-5 [ 2 NI

T n=0

(3.13)

The series in equations (3.12) and (3.13) converge
rapidly, so that replacing them by their leading terms
gives good approximations.

When 4 is large enough, the simple expressions

4 )
R, =- = 3.14
' 50—~ 065 (3.14)

and
R, = 64%/5 (3.15)

are useful. Note that
64 _
= ZO(—I)"(Zn +1)™% ~ 0.65.

For the square cavity with 1 = 1,®,,, = 00737 R, §,
= f, = R/198,and R, = R, = 198.

The dependence of R, and R, on A for rectangular
cavities is shown in Fig. 3.

4. SOLUTION FOR ELLIPTICAL CAVITIES
The elliptical cavity has axes of length a and b

(a = b) and we choose coordinates (x,, z,) such that
x, = 0and z, = 0 contain the minor and major axes
respectively. In this case L = 3{nab)' 2. We then have
equation (2.9) subject to the condition that

® = 0 on the ellipse 7d~'x% + niz? = 1. (4.1)

The solution of equation (2.9) satisfying condition (4.1)
is
R i

= —2;,{2-{—7(1 —~ A x? — mﬁzz).

4.2)

Figure 4 depicts the stream function in the dimension-
less form R™'®(x, z) for A = 1, 2 and 4.
1t follows from equation (4.2) that

— R 0 i
max 27 ;tz + 1 .
The dependence of R™'®

is shown on Fig. 2.
In this case

(I) 4.3)

on 4 for elliptical cavities

max

) 2R }'3/‘2
H, = kfA'? <3n3"2></12 i 1>, (44)
2R A2
H, = x6'? 417 (37:3,2)(4,2 . 1>, @5)
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FiG. 3. Free convection at small Rayleigh number in

rectangular, elliptical, and equilateral triangular cavities.

Dependence on the aspect ratio A of the critical value of R
for applicability of the small Rayleigh number analysis.
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FiG. 4. Free convection at small Rayleigh number in elliptical cavities. Dimensionless plot of the stream
function for aspect ratio A = 1, 2, and 4. Numerals on the curves are values of 10*®/R.

2 } ,
K, = WKHA'IZ AR (4.6)
2 1,2 9172
K, = —M—KOA AL 4.7)
i
We therefore have that
R A?
by 3n 241 (4.8)
and
R 1
=— 4.9
b2 3n A2+ 1 *+9)

and the criteria on R for applicability of the present
analysis follow. For elliptical cavities with long axis
horizontal

3
R<R, =201+ (4.10)
10
For elliptical cavities with long axis vertical
3
R<R,=22(2+1) @.11)
10
For the circular cavity with 1 = 1, ®_, = 0.0796R,

B, = B, = R/188,and R, = R, = 1.88. The depen-
dence of R, and R, on 4 for elliptical cavities is shown
in Fig. 3.

5. SOLUTION FOR TRIANGULAR CAVITIES

We consider the cavity with cross-section consisting
of an equilateral triangle of side I. We choose coor-
dinates (x,, z,) such that the centroid of the triangle is
(0,0)and one vertex is (0, 3~ ' 2]). The x,, axis is thus the
perpendicular bisector of one side of the triangle. We
have A = 3'2I% so0 that L = 43'/*]. Equation (2.9) is
then subject to the condition that

® =0 on the triangle (z + 37 3#)(z — 312 x — 2.3734)
=0. (5.1)

The required solution is
R - -
D= e (z 4+ 373%)(z — 312x — 23734

X (z + 312x —2373%) (52)

Figure 5 depicts the stream function in the dimension-
less form R~ !®(x, z). We note that

®,, =3 %2R =00642R. (5.3)

This value is plotted on Fig. 2 for comparison with the
result for rectangular and elliptical cavities.
In this case

8R

81.334° (5.4)

H, = k0A4'" -

-0-2 0

-04
X

-08  -06
FI1G. 5. Free convection at small Rayleigh number in equilat-

eral triangular cavities. Dimensionless plot of the stream
function. Numerals on the curves are values of 10*®/R.
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Table 2. Values of a, v, k for air- and water-filled soil at 293 K

4 vV K

Fluid K™ (m*s™) (m?s™1)
Air 34 x 1073 153 x10°3 2 x 1077
Water 205 x 107* 101 x 107° 8 x 1077

H2=K0A‘2-4‘3%;, (5.5)
K, = 3'%x0A4'?, (5.6)
K, =4.373%k04' 2, (5.7
Accordingly,
8R R
Bi=53= 04 (58)
35R R
B, = 376 = 165" (5.9)

We thus have the following criteria for applicability of
the present analysis:

For equilateral triangular cavities with one side
horizontal

R <R, =304. (5.10)

For equilateral triangular cavities with one side
vertical

R < R, =165. (5.11)

These criteria are shown on Fig. 3.

6. CAVITIES OF OTHER SHAPES

It will be evident from Sections 3-5 that exact
solutions are readily available for cavities with various
singly and doubly connected cross-sections bounded
by streamlines in the preceding solutions. These cavity
configurations are, in general, somewhat artificial, and
we shall not elaborate on them here. For the cavity of
annular cross-section we note in passing the simple
result

R
Q.= an 6.1)
with the total convective flow independent of the ratio
of the internal and external radii.

Simple exact solutions of equation (2.9) exist also for
porous bodies of various infinite cross-sections. In
general, these solutions are of restricted interest:
physical realization of the boundary conditions at
infinity is usually problematical; and the Rayleigh
number tends to become arbitrarily large in the far

flow field.

7. CONCLUDING REMARKS

7.1. Comparison of results for cavities of various shapes

Figures 1, 4, and 5 indicate that the general charac-
ter of the convective fiows for cavities of the various
shapes and with various aspect ratios are essentially

J. R. PHiLIP

similar. We emphasize that A'/* proves a very efficient
characteristic length, leading to dimensionless results
for integral properties of the convective motion which
vary relatively little with cavity shape. The variation of
®,... with 4 for rectangular and elliptical cavities is
essentially similar. The ellipse constitutes a more
efficient flow field than the rectangle, and the rectangle
is more efficient than the triangle ; and these differences
are reflected in the result (Fig. 2) that @, is greater for
the ellipse than for the rectangle, and it is greater for
both than for the triangle (4 = 1). As shown in Fig. 3,
the variation of critical Rayleigh number with 4 is quite
similar for the rectangle and the ellipse.

7.2. Applications to soil

Table 2 gives values of a, v, and « for dry (air-filled)
and saturated (water-filled) soil at 293 K. The values
given for x are typical values based on the extensive
studies of de Vries [17, 18]. Using these values and
taking g = 9.8ms~ 2, wefind R = 11 x 10° k0A for
dry soils and R = 2.5 x 10° k84 for saturated soils.
Units of k, 6 and A are, respectively, m?, Km™!, and
m?. The permeability k varies in the range 107! m? or
more for sands to 107 '*> m? or less for fine-textured
soils [19]. Evidently there is a wide combination of
practical values of k, 8, and 4 which yield values of R
satisfying the criteria for applicability of the present
analysis.

The practical interest in these convective motions at
small Rayleigh number centres on the flows them-
selves, and on the consequent passive convection of
certain entities with small molecular diffusivity. In the
case of water-filled soils, the transport in this way of
nutrients, OQ,, and CO, dissolved in the soil-water are
of concern to plant scientists. The molecular diffusivity
of these entities in water is of order 107° m? s~ 1.
Transport to plant roots plays an important role in
plant nutrition, and the transport of O, and CO, to
and from all subterranean plant parts is essential to
maintenance of the respiration of such parts.

7.3. Extensions of this study

In conclusion, we note three directions in which
extensions of this study may be made. Firstly, the
approach may be carried over from 2-dim. flows to 3-
dim. flows with cylindrical symmetry about a vertical
axis. Secondly, the possibility offers of supplementing
the present results by regular expansions in R with the
‘coefficient’ of each term an exact solution. Thirdly, our
rotational invariance theorem has its analogue for free
convection of Newtonian fluids. It is planned to treat
these matters in later communications.
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LA CONVECTION LIBRE AUX PETITS NOMBRES DE RAYLEIGH DANS LES CAVITES PO-
REUSES A SECTION TRANSVERSALE RECTANGULAIRE, ELLIPTIQUE, TRIANGULAIRE,
ET D’AUTRE FORME

Résumé—On développe des solutions précises pour la convection libre aux petits nombres de Rayleigh dans
les cavités poreuses & deux dimensions de forme différente provoquée par un gradient de tempsrature
constant perpendiculaire au champ de gravitation. On établit le théoreme que de tels écoulements sont
indépendants de I'orientation de la cavité. La longueur caractéristique (a rotation invariable) est donc A1
{A—surface de la section transversale). On présente en détail des solutions précises pour les cavités
rectangulaires et elliptiques 4 4 (rapport de I'axe long 4 'axe court) arbitraire, ainsi que pour les cavités ayant
la forme d’un triangle équilatéral. Le nombre de Rayleigh qui est critique & Pégard de Papplication de
P'analyse est de | environ pour les cavités 4 axe long horizontal et de 4? environ pour celles 4 axe long vertical.
11 existe également de simples solutions précises pour cavités d’autres formes.

DIE FREI KONVEKTION BEI KLEINER RAYLEIGH-ZAHL IN POROSEN HOHLRAUMEN
RECHTECKIGEN, ELLIPTISCHEN, DREIECKIGEN, SOWIE ANDEREN QUERSCHNITTES

Zusammenfassung——Fir die durch ein einheitliches, zum Gravitationsfeld senkrechtes Temperaturgefélle in
zweidimensionalen pordsen Hohlrdumen verschiedener Form bedingte freie Konvektion bei kleiner
Rayleigh-Zahl werden Genaue Losungen hergleleitet. Das Theorem, dass solche Strémungen unabhingig
von der Hohlraumsorientierung sind, wird bewiesen. Die entsprechende (drehungsinvariante) Kennlinge ist
demzufolge A'? (A: Querschnittsfidche). Genaue Lésungen werden fiir rechteckige bzw. elliptische
Hohirdume bei beliebigem A (Verhaltnis der langen zur kurzen Achse) sowie fiir Hohlrdume, die die Form
eines gleichseitigen Dreicks aufweisen, ausfithrlich beschrieben. Die fiir die Anwendbarkeit der Analyse
kritische Rayleigh-Zahl betrigt bet Hohlrdumen mit horizontaler langer Achse ungefiibr | und bei solchen
mit vertikaler langer Achse etwa A%, Es bestehen auch genau Losungen fur Hohlrdume anderer Formen.

CBOBOJAHASA KOHBEKLMA IMPH HEBOJBIIUX YUCIAX PEJIES BHYTPU
MMOPHUCTBIX MOJOCTEN C MPAMOYI'OJBHBIMY, INTUNTHYECKHAMH,
TPEVI'OJIBHBIMH, U JPYTUMH NONEPEYHLIMU CEYEHHUAMU

Aunorauns — Touneie peiienus pa3pabaThiBaloTcs 1A CBOGOIHOM KOHBEKIIMHU IPpH HEGONBLINX YHCIAX
Penes BRYTpH nopucThix monocteit pasmuuHpix Qopm obycnosena PaBHOMEDHBIM TEMNEPATYPHBIM
TPAfMEeATOM NCPNCHOMKYJISDHBIM K TPaBHTALHOHHOMY nojio. Teopemoil ycTaHOBJIEHO, 4TO Takue
HOTOKH HE3ABHCHMBI OT OPHEHTAHMH nonoctd. COOTBETCTBYIOUIAN XapaKkTepHas (BPAIATENALHO HHBA-
pHanTHas) mwHAa — 412 (4 — noomane NOAEPEYHOrO ceYCHHR). TOUHbIE PEIIEHHA NPEACTaBIAIOTCH
AoApOGHO TS NPSMOYTONILHBIX H NUIMITHYECKHX MONOCTEd MpH NPOM3BOJIBHOM A (COOTHOIEHHE
IJHHHOH OCH K KOPOTKOH) H JUIS PABHOCTOPOHHBIX TPEYFOJBHBIX NOJOCTeH. KpHTHUECKOE HMHCNO
Penest nns npumenenus aHmanusa Ans MOAOCTEH ¢ rOPH3OHTANLHON ANHHHON OChIO — okono 1 g
C BEPTHKANBHOH ANMHHOM 0CBIO — 0Kk070 A%, TIPOCTHie TOUHBIE PEHICHHS CYIMECTBYIOT Takke JUIs
nojioctel ¢ OpyruMu Gopm.
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